Bacteriophages and endolysins to tackle respiratory infections caused by superbugs

Sydney Pharmacy School
The University of Sydney

Hak Kim Chan, PhD, DSc
Antibacterial resistance is a global health issue

What you need to know

WHO’s first global report on antimicrobial resistance, with a focus on antibiotic resistance, reveals that it is no longer a prediction for the future. Antibiotic resistance - when bacteria change and antibiotics fail - is happening right now, across the world.
Superbugs, No Drugs!

Over the last 30 years, no major new types of antibiotics have been developed

- Penicillin
- Cephalosporin
- Carbapenem
- Fluoroquinolones

Discovery void
What are bacteriophages?
Phages to combat antibiotic-resistant bacteria

Bacteriophages (phages)
- ‘Bacteria eaters’
- Viruses that can target and kill superbugs
- Replicates inside the bacteria
- Can penetrate biofilm

Inhaled phages therapy:
deliver phages to the lungs to treat bacterial respiratory infections
PEV phages

PEV1, PEV2, PEV10, PEV20, PEV31, PEV40, PEV61
Podoviruses and myoviruses
Effective against *Pseudomonas aeruginosa*

Prof Betty Kutter, Evergreen State College, Washington
Screened against 90 clinical and MDR *P. aeruginosa* isolates collected in Australia
Inhalation aerosol delivery – Liquid Formulation

- Generate inhalable aerosols using nebulisers
- Device: bulky, require electricity, regular disinfection
- Require refrigeration (cold chain storage)
- Phages are under stress during nebulisation (titer loss)
- Suitable nebuliser choice is crucial

https://www.atemwegsliga.de/en-nebulizer.html
Mesh nebuliser

Jet nebuliser

https://www.directhomemedical.com/cart/graphics/00000001/pari-vios-pro-compressor-nebulizer-kit-lc_600x600.jpg
https://www.youtube.com/watch?v=J5GOPTE6bEo
Inhalation aerosol delivery – Powder Formulation

- Inhaler devices: small, portable, not require electricity, better patient adherence

- No cold chain storage required (longer shelf-life, likely cheaper cost for final products)

Osmohaler
(dry powder inhaler)
Production of **inhalable & stable** phage powders

Spray-drying

Spray dried powder containing phage and excipients

Stabilisation

In vitro biological activity (phage titre)

Characterisation

Physicochemical properties (size, crystallinity, thermodynamic properties, dispersibility, phage release)

Stability over time

Research paper

Production of highly stable spray dried phage formulations for treatment of *Pseudomonas aeruginosa* lung infection

Rachel Y. Chang\(^a\), Jennifer Wong\(^a\), Ash Mathai\(^a\), Sandra Morales\(^b\), Elizabeth Kutter\(^c\), Warwick Britton\(^d\), Jian Li\(^e\), Hak-Kim Chan\(^a,*\)

• Seven Excipients: lactose, trehalose, mannitol, glycine, leucine, PEG3000, Pluronic F68

Increasing leucine concentration

Increasing sugar concentration

Phage Biological Stability

Powder Physical Stability
In vivo efficacy and safety testing
neutropenic mouse lung infection model

1640 cm$^{-1}$ - 1538 cm$^{-1}$ - 1724 cm$^{-1}$ - 1384 cm$^{-1}$ - 1232 cm$^{-1}$

Khanal et al
Anal Chem
2019 (in press)
a. Microtome the powder

Spray dried phage powder Embedding in epoxy and curing

AFM-IR measurements

AFM-IR spectra acquired

b. Conventional FTIR

![Image of FTIR scan]

C. NaSt-Lactose NaSt-lactose-phage

![Graph showing transmittance vs. wavenumber]
Phage and antibiotic combination
Lin et al. 2018 Int J Pharm. 551:158-165

Nebulisation of phage and antibiotic combination
Production of inhalable powders containing phage and antibiotics
In vivo efficacy testing
Phage and antibiotic combination
Lin et al. 2018 Int J Pharm. 551:158-165

In vitro synergistic efficacy screening

FDA approved five antibiotics for inhalation

Colistin
Aztreonam
Tobramycin
Ciprofloxacin
Amikacin

1/2 MIC and 1/4 MIC

Phage PEV20

MOI: 0.01, 0.1, 1, 10, 100, 1000

Bacterial killing kinetics study

Bacterial survival rate:

OD_{600} of treatment group/ negative control
Synergy vs P. aeruginosa FADD1-PA001

Antibacterial activities of phage PEV20 (MOI=0.1) against P. aeruginosa FADD1-PA001 in the presence of 1/4 MIC of ciprofloxacin (CIP), amikacin (AMI), colistin (COL), tobramycin (TOB), and aztreonam (AZT). (n=5)
Antibacterial activities of phage PEV20 (MOI=100) against *P. aeruginosa* JIP865 in the presence of 1/2 MIC of ciprofloxacin (CIP), amikacin (AMI), colistin (COL), tobramycin (TOB), and aztreonam (AZT) (n=5).
No synergy vs *P. aeruginosa* 20844n/m(s)

Antibacterial activities of phage PEV20 (MOI=1000) against *P. aeruginosa* 20844n/m(s) in the presence of 1/2 MIC of ciprofloxacin (CIP), amikacin (AMI), colistin (COL), tobramycin (TOB), and aztreonam (AZT) (n=5).
Phage and antibiotic combination

Lin et al. 2018 Int J Pharm. 551:158-165

Synergy of nebulized phage PEV20 and ciprofloxacin combination against *P. aeruginosa*

Suppress emergence of phage- and antibiotic-resistant bacterial strains
Synergy remains after nebulisation

Calculated and observed bacterial **survival rate** of strain FADD1-PA001 or JIP865 of PEV20-ciprofloxacin combination at 24 h of bacterial growth kinetics study before and after nebulization (n=6).

<table>
<thead>
<tr>
<th>Nebulizer Type</th>
<th>Strain</th>
<th>Calculated</th>
<th>Observed before nebulization</th>
<th>Observed after nebulization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FADD1-PA001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air-jet nebulizer</td>
<td></td>
<td>0.06±0.02</td>
<td>0.02±0.002*</td>
<td>0.03±0.007*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.53±0.07</td>
<td>0.01±0.006*</td>
<td>0.01±0.003*</td>
</tr>
<tr>
<td></td>
<td>Run 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.03±0.007*</td>
<td>0.02±0.009*</td>
<td>0.01±0.005*</td>
</tr>
<tr>
<td></td>
<td>Run 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.03±0.008*</td>
<td>0.01±0.004*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Run 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vibrating mesh nebulizer</td>
<td></td>
<td>0.09±0.02</td>
<td>0.01±0.003*</td>
<td>0.05±0.002*</td>
</tr>
<tr>
<td></td>
<td>JIP865</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0±0.3</td>
<td>0.03±0.007*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Run 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.01±0.003*</td>
<td>0.01±0.005*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Run 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.01±0.003*</td>
<td>0.02±0.005*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Run 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Statistically significant (p<0.05) according to ANOVA.

Note: nebulization was carried out in triplicate using both nebulizers.
Aerosol performance of nebulised phage-ciprofloxacin combinations

Fine particle fraction < 5 µm using the Pari air-jet and eFlow vibrating mesh nebulisers (n=3).

Aerosol particle size distributions (n=3)

<table>
<thead>
<tr>
<th>Nebulisers</th>
<th>Target strain</th>
<th>D_{10} (µm)</th>
<th>D_{50} (µm)</th>
<th>D_{90} (µm)</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air-jet</td>
<td>FADD1-PA001</td>
<td>1.25 ± 0.16</td>
<td>3.62 ± 0.22</td>
<td>9.82 ± 0.45</td>
<td>2.37 ± 0.07</td>
</tr>
<tr>
<td></td>
<td>JIP865</td>
<td>1.26 ± 0.13</td>
<td>3.72 ± 0.21</td>
<td>9.80 ± 0.45</td>
<td>2.29 ± 0.05</td>
</tr>
<tr>
<td>Vibrating mesh</td>
<td>FADD1-PA001</td>
<td>2.09 ± 0.06</td>
<td>5.12 ± 0.03</td>
<td>12.68 ± 0.04</td>
<td>2.07 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>JIP865</td>
<td>2.11 ± 0.02</td>
<td>5.31 ± 0.09</td>
<td>13.51 ± 0.55</td>
<td>2.14 ± 0.07</td>
</tr>
</tbody>
</table>
Powder Formulations

Components (current dose of ciprofloxacin 32.5 mg)
- **Formulation A**: 35.7% ciprofloxacin HCl, 32.2% lactose, 32.2% leucine, phage PEV20
- **Formulation B**: 68.9% ciprofloxacin HCl, 31.1% leucine, phage PEV20

Spray drying conditions
- Inlet 60 °C
- Aspiration 100% (35m³/h)
- Pump 5% (1.5 mL/min)
- Atomizing airflow 60 mm (742 L/h)
Powder Formulations

Aerosol performance: Fine particle fraction (< 5 µm)
59.7% (A) and 64.3% (B)

Lin et al (2019)
Eur J Pharm Biopharm
142:543
In vitro antimicrobial synergy maintains after aerosolisation

OD 600 at 24h

Ciprofloxacin only PEV20 only FADD1-PA001 JIP865

Before After Before After Negative control

Formulation A aerosolization Formulation B aerosolization

Lysins – phage lytic enzymes

- bactericidal on contact for rapid killing
- effective vs superbugs, biofilms, and synergistic with antibiotics

Cpl-1, a *Pneumococcal* lysin

Effective against *Streptococcus pneumoniae* in murine models

https://www.rcsb.org/structure/1H09
Endolysin Cpl-1

Before nebulization

Jet nebulizer collected during 14-21 min

Mesh nebulizer

20min

20min

20min

20min
Conclusions

1. We recommend mesh nebulisers over air-jet nebulisers for generating phage and endolysin aerosols

2. We can make inhalable powders with phages remaining biologically intact

3. It is safe and efficacious to deliver phage powders in a murine acute lung infection model with MDR P. aeruginosa.

Where are we headed?
• PK/PD, dose regimen
• Non-neutropenic animal model
• Combination therapy
• Further formulation R&D
Acknowledgments

| Sandra Morales
| Elizabeth Kutter
| Jian Li, Jiping Wang
| Warwick Britton
| Daniel Nelson

financially supported under Award Number R21/R33 AI121627